
1 Theoretical questions

(answer them in short and clear sentences including the necessary formulas when
needed)

1. Describe the properties of ionic crystals!
Solution:
Ionic crystals
• they are rigid and brittle
• bad heat conductors
• bad electric conductors
• have high melting point
• are diamagnetic

2. What are the properties of covalent crystals?
Solution:
• rigid electronic structure
• hard materials
• bad heat conductors (there are no free electrons available)
• bad electric conductors (same reason)
• high frequency lattice vibrations (with excitation energies in

the infrared (IR) range)
• they have a large electronic band gap therefore they are trans-

parent for visible light
3. What are the properties of molecular crystals?

Solution:
• extreme week bonding
• bad heat conductors
• bad electric conductors
• low melting point
• low boiling point
• easily compressible and deformable

4. What are the properties of an ionic crystals?
Solution:
• they are rigid and brittle
• bad heat conductors
• bad electric conductors
• high melting point
• diamagnetic

5. What do we call an atomic orbital? What is a molecular orbital?
Solution:
An atomic orbital is the wave function of the electron inside the
atom. The molecular orbital is the same for a molecule. (In chem-
istry the same term may be applied to the region of space where the
electron is found with suitable high (e.g. 90%) probability.)

6. Define short and long range ordering and the coordination number.
Solution:
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• Short range ordering: First- or second-nearest neighbors of an
atom are arranged in the same structure. At distances that
are many atoms away, however, the positions of the atoms are
uncorrelated.

• Long range ordering: Once the positions of an atom and its
neighbors are known at one point, the place of each atom is
known precisely throughout the material.

• Coordination number: the number of nearest neighbors (the
number of lattice points which are closest to a selected point)
in a lattice.

7. Define the concepts that are used in the description of crystal structures.
Solution:
The physical structure of the crystal is described by a system of
geometrical points, the so called point lattice and the basis con-
taining the atoms or molecules, which are located at every one of
these geometrical points.

8. Define the conventional and primitive cells.
Solution:
• The volume of space that when translated through all of the

point lattice vectors just fills the complete space without overlap
or without leaving voids is called a primitive cell or primitive
unit cell. These are not unique. A prmitive cell contains 1
lattice point.

• Those non-primitive unit cells that have all of the symmetry
of the crystal are called conventional unit cells.

9. Define the unit cell, primitive cell and conventional cell!
Solution:
A unit cell is a volume of space with which we can fill the entire
space without overlap and without leaving voids. A primitive cell is
aunit cell that contains only a single point A conventional cell is a
unit cell that has all the symmetries of the crystal

10. Describe at least three point defects in a crystal!
Solution:
Remark: It is enough to write down the names of the defects.
• Vacancy or Schottky defects are lattice sites which would be

occupied in a perfect crystal, but are vacant. In equilibrium all
crystals must have them.

• Interstitial defects are atoms that occupy a site in the crystal
structure at where there is usually no atom. They are generally
high energy configurations.

• Frenkel pair or Frenkel defect. A nearby pair of a vacancy and
an interstitial caused when an ion moves into an interstitial
site and creates a vacancy.

• Substitutional atoms when a foreign (impurity) atom occupies
a lattice position.

• Antisite defects. Occur in an ordered alloy or compound when
atoms of different type exchange positions.

• Topological defects Regions in a crystal where the normal chem-
ical bonding environment is topologically different from the sur-
roundings.
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11. Describe the two main types of a metal-semiconductor junctions!
Solution:
Two kinds of junctions can be present. One is the (non-rectifying)
voltage independent ohmic contact, the other one is the (rectifying)
Schottky junction.

12. What are holes, and are they present in metals as well as in semiconductors?
Solution:
Holes are positive charge carriers in solids (both metals and semi-
conductors) which - apart from their opposite sign charge - behave
exactly like electrons do. Conduction in a band can be described
using either electrons or holes but not with both of them. In semi-
conductors holes are used in the valence band and electrons in the
conduction band, because the other charges do not move.

13. Are there metals with holes as majority charge carries instead of electrons? If
there are then explain how is it possible, if there are not explain why!

Solution:
Yes Mg and Cd for instance have completely filled s–bands over-
lapped by an empty conduction band. Mobility of electrons in that
band is lower than the mobility of the holes remaining in the valence
band making hole current the dominant one as it is shown by the
Hall effect.

14. What are Bloch-functions, and can they be constructed from localized elec-
tronic orbitals?

Solution:
Bloch functions are one electron functions which describe non in-
teracting free electrons in a crystal. They wave functions in one
dimension are of the form: ψ(x) = u(x) ei k r, where u(x) is a lat-
tice periodic function. They are constructed from localized atomic
orbitals in the tight binding model.

15. Does the Sommerfeld nearly free electron model explain the difference between
metals and insulators? Explain!

Solution:
No. In the Sommerfeld model the solid is represented by a poten-
tial box with free electrons inside it. This model is not valid for
insulators, where there are no free charge carriers.

16. Enumerate at least 5 possible symmetries of a crystal lattice. (The one com-
mon for all crystals must be included, otherwise the answer is void.)

Solution:
• translational symmetry - the most important one, as every

crystal must have it
• 2, 3, 4, 6 –fold rotational symmetry (rotation by 180, 120, 90, 45o

respectively)
• mirror symmetry – (reflection across a plane)
• inversion through a point (center of symmetry)
• improper rotation or rotoinversion – (may be defined as “com-

binations of rotation with a center of symmetry” OR “rotation
about an axis and a reflection in a plane perpendicular to the
axis” - OR “rotation and inversion in a point”.)

(Each rotational symmetry is counted separately, so it is enough to
mention them and the translational symmetry, but if they are only
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referred to as ’rotational symmetry’ that is worth only one. This
case 4 symmetries are enough. 1-fold rotation doesn’t count.)

17. Enumerate the phenomena that lead to the development of quantum physics.
Solution:
• Black body radiation
• (external) Photoelectric effect
• Compton effect
• Stability of atoms
• Line spectrum of atoms
• Frank-Hertz experiment

18. Give the formula to calculate the average value of an energy physical quantity
O in a solid!

Solution:

< O >=

∫
all E

g(E) fFD(E) dE (1.1)

19. How can a Bloch electron be moved outside the first Brillouin zone in direct
and indirect gap semiconductors?

Solution:
• in an direct gap semiconductor: by colliding with or emitting

a photon as the momentum of photon is negligible relative to
the momentum of the electron

• in an indirect gap semiconductor: by colliding with or emitting
a photon - this provides the energy and absorbing or emitting
a phonon - which provides the momentum difference, because
the momentum of photon, and the energy of the phonon are
negligible relative to those of the electron

20. How can we determine the solution of the time-dependent Schrödinger equa-
tion from the solutions of the stationary equation?

Solution:
The eigenfunctions of the time dependent Schrödinger equation are
the products of the eigenfunctions of the corresponding stationary
Schrödinger equation and the function e−E/~ t. Therefore the so-
lution of the time dependent equation may be written as a linear
combination of such products.
In 1D e.g.:

ψ(x, t) =
∑
E

φE(x)e−E/~ t

21. How many Bravais lattices are there and is it possible that a lattice is not a
Bravais lattice?

Solution:
There are 14 different Bravais lattices. The lattice of 2D hexagons
does not form a Bravais lattice.

22. How many branches are in the dispersion relation of a 1 dimensional diatomic
linear chain with a 2-atom basis and what are their characteristics?

Solution:
It has 1 acoustic and 1 optical branch. In the acoustic branch near
k ≈ 0 the atoms vibrate in phase, while in the optical branch their
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relative phase is 90o . At the edges of the Brillouin zone the vibration
of the two sub–chain of the different atoms is such that one sub–
chain is vibrating while the other one is stationary.

23. How many branches does the diatomic linear chain dispersion relation have
and what are their characteristics?

Solution:
It has one acoustic and one optical branch. In the acoustic branch
near k ≈ 0 the atoms vibrate in phase, while in the optical branch
their relative phase is 90o . At the edges of the Brillouin zone the
vibration of the two sub–chain of the different atoms is such that
one sub–chain is vibrating while the other one is stationary.

24. How many branches does the dispersion relation of a 3 dimensional diatomic
linear chain with a 2-atom basis have and what are their characteristics?

Solution:
It has 3 acoustic and 3N − 3 optical branches. In the acoustic
branches near k ≈ 0 the atoms vibrate in phase, while in the optical
branches their relative phase is 90o . At the edges of the Brillouin
zone the vibration of the two sub–chain of the different atoms is such
that one sub–chain is vibrating while the other one is stationary.

25. How many branches does the dispersion relation of a 3 dimensional diatomic
linear chain with an n-atom basis have and what are their characteristics?

Solution:
It has 3 acoustic (1 longitudinal and 3 transverse) and 3n−3 optical
(n− 1 longitudinal and 2n− 2 transverse) branch. In the acoustic
branches near k ≈ 0 the atoms vibrate in phase, while in the optical
branches their relative phase is 90o . At the edges of the Brillouin
zone the vibration of the two sub–chain of the different atoms is such
that one sub–chain is vibrating while the other one is stationary.

26. How many branches does the dispersion relation of the
diatomic linear chain have and what are their characteristics?

Solution:
It has one acoustic and one optical branch. In the acoustic branch
near k ≈ 0 the atoms vibrate in phase, while in the optical branch
their relative phase is 90o. At the edges of the Brillouin zone the
vibration of the two sub–chain of the different atoms is such that
one sub–chain is vibrating while the other one is stationary.

27. How many branches have the dispersion relation of a 1 dimensional diatomic
linear chain with a 2-atom basis have and what are their characteristics?

Solution:
It has 1 acoustic and 1 optical branch. In the acoustic branch near
k ≈ 0 the atoms vibrate in phase, while in the optical branch their
relative phase is 90o . At the edges of the Brillouin zone the vibration
of the two sub–chain of the different atoms is such that one sub–
chain is vibrating while the other one is stationary.

28. “In extrinsic semiconductors the number of the conduction electrons is equal
to the number of valence band holes.” Is this statement true or false and why?

Solution:
False. Extrinsic semiconductors have dopants (either donor or ac-
ceptor atoms present). The overwhelming majority of the charge
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carriers come from these. Therefore nc and pv will differ.
29. Is it always true that the wave function of a system of electrons must be

antisymmetric for the exchange of the coordinates of two electrons? Explain.
Solution:
False. The total wave function (including the spin) of a system of
electrons must always be antisymmetric to the exchange of the co-
ordinates of two electrons. This wave function can be written as a
product of two functions. One that depend on the spatial coordinates
of the electrons the other one depends on their spin. So when the
spin dependent part is antisymmetric the spatial coordinate depen-
dent part must be symmetric.

30. Order the following materials according to their approximate band gap sepa-
rating the valence and conduction bands from smallest to largest:
aluminium oxide, copper, diamond, germanium, magnesium, silicon
What type of materials are these?

Solution:
metal: copper (0), magnesium(0), semiconductor: germanium(0.7),
silicon (1.1), insulator: diamond(4), aluminium oxide(6,7) All val-
ues in braces are in eV, The student is not required to give these
and the order in the semiconductor insulator and conductor groups
is not important.

31. Prove with a simple argument why the reciprocal lattice of the reciprocal
lattice is the direct lattice!

Solution:
In the definition equation eiK·R = 1, or K · R = 2π the role of
the direct lattice vector R and the reciprocal lattice vector K is
symmetrical, therefore either of them is the reciprocal vector of the
other.

32. The electrical current in a metal . . .Delete the invalid statement(s) from be-
low!
(a) . . . can be described as a current of electrons
(b) . . . can be described as a current of holes
(c) . . . is zero for a full band

(d) . . . is proportional to e
− eφ
kBT

Solution:
delete only (d)

33. The following picture depicts the valence and conduction bands of a semicon-
ductor. Mark the bands and the forbidden gap on the figure.

Solution:
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The gap is between the x axis (max. value for the valence band edge)
and the minimum of the conduction band edge at the right.

34. The following picture depicts the valence and conduction bands of a semicon-
ductor. The electrons or the holes have larger absolute effective mass? Mark
the forbidden gap on the figure.

Solution:
a) The curvature of the conduction band edge is larger (approxi-
mately a more narrow parabola) than that of the valence band edge
(|1/d2Ec/dk2)| < |1/d2Ev/dk2)| ⇒ the effective mass of holes is
larger. b) The gap is between the x axis (max. value for the valence
band edge) and the minimum of the conduction band edge at the
left.

35. The sentence
“A crystal lattice is described by a .... and a ...., the latter is the ...... at any
.... .”
define the crystal lattice. Fill in the spaces!

Solution:
A crystal lattice described by a point lattice and a basis, the latter
is the atoms or molecules at any lattice point.”

36. Under which circumstances (and in which types of materials) can
the electrical current in a material attributed to both electrons
and holes as charge carriers?

Solution:
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The current of charge carriers in a single band can be described
either as the current of electrons or the current of holes, but not
to both of them. Therefore to have a current of both of these the
material must have at least two not completely filled bands. These
materials are insulators including semiconductors and some metals
with overlapping bands, e.g. Mg.

37. Under which condition can we neglect the induced emission?
Solution:
In thermal equilibrium, when h ν/kB T � 1, i.e. for light and higher
frequency radiation.

38. What are conventional and primitive cells?
Solution:
• The volume of space that when translated through all of the

point lattice vectors just fills the complete space without overlap
or without leaving voids is called a primitive cell or primitive
unit cell. These are not unique. A primitive cell contains 1
lattice point.

• Those non-primitive unit cells that have all of the symmetry
of the crystal are called conventional unit cells.

39. What are selection rules and what do they mean?
Solution:
Selection rules constrain the possible transitions of a system. They
can be formulated for electronic, vibrational or rotational transi-
tions. Examples: for electronic transitions the total angular mo-
mentum difference between the initial and final states must be an
integer multiple of ~. Transitions prohibited by a selection rule may
still happen by allowing other kind of interactions taking place. Usu-
ally these transitions have a much smaller probability than the one
prohibited by the selection rule.

40. What are the assumptions of the Bose-Einstein and of the Fermi-Dirac statis-
tics?

Solution:
Both statistics are valid for indistinguishable particles. Fermi-Dirac
statistics is valid for half-spin particles called fermions (like elec-
trons) where no two particle may occupy the same quantum state,
while Bose-Einstein statistics is valid for particles of integer spin
(bosons), where any number of particles may be in the same quan-
tum state.

41. What are the assumptions of the Drude model of conductivity?
Solution:
(a) electrons do not interact with each other (independent electron

model)
(b) conduction electrons collide only with the ion cores
(c) these collisions are completely inelastic: electrons lose all of

their kinetix energy in a collision
42. What are the assumptions of the Sommerfeld model of conductivity?

Solution:
In longer form:
(a) ion cores are stationary
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(b) conduction electrons do not interact with the ion cores, so the
metal may be represented by a potential box

(c) electrons do not interact with each other (independent electron
model)

(d) even though there are no interactions between electrons still no
2 electrons can be in the same quantum state when we include
the spin as a quantum number (Pauli principle)

In shorter form
(a) ion cores are stationary
(b) the metal is a potential box
(c) electrons do not interact (independent electron model)
(d) the Pauli principle is valid

43. What are the basic elements of a laser?
Solution:
• pumped amplifier
• feedback (frequency relative)
• out coupler

44. What are the characteristics (just keywords please) and application area of
the following X-ray diffraction methods? Laue method (1), Rotating crystal
method (2), Debye-Sherrer powder method (3)?

Solution:
(a) polychrome X-ray (λmin ≤ λ ≤ λmax) – large single crystal,

used for determining the orientation of the crystal
(b) monochrome X-ray – single crystal rotated – determine un-

known crystal structures
(c) monochrome X-ray – powderized single crystal – determination

of lattice constants
45. What are the characteristics of the acoustic and optical branches of the 3D

phonon dispersion relations? How many of them are there in a solid of N
atoms basis?

Solution:
• acoustic branch – ω(k = 0) = 0, all atoms in the basis vibrate

with the same phase, there are 3 of them
• optical branch – ω(k! = 0) = 0, atoms in the basis are vibrating

in different (with a 2 atom basis - opposite) phases. there are
3n− 3 of them, n− 1 longitudinal and 2n− 2 transverse ones.

46. What are the crystal momentum and total momentum of the Bloch electrons?
Solution:
The total momentum is

p = ~k + pu

where ~k is the crystal momentum of the Bloch electron.
47. What are the drift velocity and the mobility of the electrons? What is the

connection between the conductivity and these?
Solution:
In an E field the average velocity of the electrons is called the drift
velocity. It is small and proportional with E and the proportionality
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factor µ is the mobility:

vdrift = µE

The conductivity:
σ = n eµ

where e is the elementary charge and n is the electron density.
48. What is a Bloch–electron and why can’t it be excited out of the first Brillouin-

zone by a constant electric field?
Solution:
Bloch electrons are independent, non interacting (crystal) electrons.In
1D Bloch electrons wave function in the form:

ψ(x) = u(x) eikx

where u(x+R) = u(x). Constant electric fields cannot excite them
outside the 1st Brillouin zone because at the zone boundary their
momentum is reflected back into the zone.

49. What is a Bravais lattice?
Solution:
Any one of the following is acceptable:
• The infinite set of discrete points with an arrangement and

orientation that appears exactly the same, from whichever of
the points the array is viewed

• A point lattice that satisfies the condition that if r is a point
in the point lattice then every other points can be reached by
using the formulas

rR = r + R, where

R = n1 a1 + n2 a2 + n3 a3

using all positive and negative numbers for n1, n2, n3
50. What is hybridization?

Solution:
Hybridization means the mixing of atomic orbitals to create orbitals
which qualitatively describe the atomic bonding in molecules. Their
name is derived from the corresponding atomic orbitals used. Ex-
ample: an sp3 orbital is the linear combination of one s and 3 p
orbitals (like in CH4)

51. What is population inversion used for lasers and how can we achieve it?
Solution:
In population inversion the population of the higher level is greater
than the one for the lower level. This is achieved by non thermal ex-
citation processes such as: electrical, chemical and optical processes

52. What is the connection between the crystal momentum and
the total momentum of a Bloch electron?

Solution:
The total momentum is

p = ~k + pu

where ~k is the crystal momentum of the Bloch electron.

10



53. What is the coordination number and what is its value for sc, fcc and bcc
lattices?

Solution:
The coordination number is the number of the nearest neighbors of
a lattice point. sc - 6, fcc - 12, bcc - 8

54. What is the difference between a crystalline and an amorphous solid?
Solution:
Crystalline solids have long range ordering and translational sym-
metry. Amorphous materials have only short range ordering.

55. What is the difference between intrinsic and extrinsic semiconductors? Which
are used in semiconductor devices?

Solution:
Intrinsic semiconductors have no dopants therefore they are more
similar to other insulators. In extrinsic semiconductors there are
either donor or acceptor atoms present. The overwhelming majority
of the charge carriers come from these. In semiconductor devices
extrinsic s.c.s are used.

56. What is the reciprocal lattice?
Solution:
each and any of the following answers is acceptable

(a) The structure of crystals can be studied using EM waves (X-
rays) with wavelengths comparable with the lattice constants of
a crystal. The reciprocal lattice is a set of those K vectors that
yield plane waves with the periodicity of the lattice.

(b) The Fourier transform of the direct lattice

(c) A lattice whose base vectors are

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

where al (l = 1, 2, 3) are the base vectors of the primitive cell
of the crystal.

57. What is the relationship between the probability per unit time of spontaneous
and induced emission between two levels?

Solution:
B21 = A21ε(ν)

58. What is the temperature dependance of the specific heat at low temperatures
for both electrons and lattice vibrations? Which one of them is dominant at
T � ΘD?

Solution:

cv = A(phonons) · T 3 +B(electrons) · T

at very low T s electron specific heat is the dominant one.
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59. Delete the invalid statement(s) from below!
The electrical current in a metal . . .
(a) . . . can be described as a current of electrons
(b) . . . can be described as a current of holes
(c) . . . is zero for a full band

(d) . . . is proportional to e
− eϕ
kBT

Solution:
delete only (d)

2 Problems

Useful constants : Planck’s constant: h = 6.63 10−34 Js,
elementary charge : e = 1.6 10−19 C,
electron mass : me = 9.1 10−31kg,
Stefan - Boltzman constant : σ = 5.670373(21) · 10−8Wm−2K−4,
Rydberg energy : 1 Ry = 13.6 eV
Avogadro’s constantL 6.022 · 1023 1/mol

60. Aluminum has three valence electrons per atom, an atomic weight of 0.02698
kg/mol, a density of 2700kg/m3, and a conductivity of 3.54 107 S/m. Calculate
the electron mobility in aluminum. Assume that all three valence electrons of
each atoms are free.

Solution:
The number of aluminum atoms per m3 is

na = 6.021023 atoms/mol · 1/0.02698 mol/kg · 2700 kg/m
3

= 6.024 1028 atoms/m
3

Thus the electron density in aluminum is

n = 3 · 6.024 1028 atoms/m
3

= 1.807 1029 electron/m
3

µ =
σ

ne
=

3.54 107

1.807 1029 · 1.6022 10−19
= 1.22 10−3m/s

61. An electron gun emits electrons with energies between 3.2 keV and 3.3 keV.
What is the minimum uncertainty of the position of the electrons?

Solution:
Because

U =
p2

2me e

p =
√

2me eU

and

∆p∆x ≥ ~
2
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and

∆p = p2 − p1 =
√

2me eU −
√

2me eU

= 3.1036419 10−23 − 3.0562553 10−23 = 4.74 10−25 kgm2/s2

∆x =
~

2 ∆p
= 1.11 10−10m

Using h/2 instead of ~/2 would give 6.99 10−10 m, while with h this
would be 1.39 10−9 m.

62. An electron is confined in a 3D potential box with sides 10µm, 20µm and
30µm. Give the energy and degeneracy of the 3 lowest states.

Solution:
The possible energy levels in one direction:

En =
h2

8me L2
n2

therefore in 3D

En1,n2,n3
=

h2

8me

(
n21
L2
1

+
n22
L2
2

+
n23
L2
3

)
= 6.02 10−28

(
n21
1

+
n22
4

+
n23
9

)
[J ]

= 3.76 10−9
(
n21
1

+
n22
4

+
n23
9

)
[eV ]

The 3 lowest lying energy states can be determined by trying out
different combinations of the 3 numbers and selecting the 3 smallest
values:
n1 n2 n3 factor
1 1 1 1.36
1 1 2 1.47
1 2 1 1.61
2 1 1 2.36
2 2 1 2.61
1 2 2 1.72
1 1 3 1.58

From this table the indices for the 3 lowest levels are: (1,1,1), (1,1,2)
and (1,2,1).
The corresponding energies and degeneracies:

Energy level E(×10−28 J) E(×10−9 eV) degeneracy
E111 8.20 5.11 1
E112 8.87 5.53 1
E121 12.7 7.94 1
E113 13.6 8.46 1
E122 14.7 9.19 1
E211 26.3 16.39 1
E212 28.3 17.7 1
E221 30.8 19.2 1
E222 32.8 20.47 1
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63. Calculate the current density of electrons and holes in the conduction band
of a 1D metal “crystal” with the following dispersion relation:

E(k)(≡ ~ω) = E0 +A (1− cosα k),

where A = 5.06 10−19J and α = 2.78 108m. (In a 1D crystal the numerical
factor in the formula for the current is 1/2π and not 1/8π3)

Solution:
The current densities in 1D are (the original formulas are in 3D
and use the factor e

8π3 instead of e
2π ):

je = − e

2π

∫
occupied levels

in band

v(k) dk

jh = +
e

2π

∫
empty levels
in band

v(k) dk

In metals the conduction band is half full and je = −jh, therefore
we only need to calculate je.
The velocity :

v(k) =
dω

d k

=
1

~
d E
d k

=
1

~
Aαsinα k

=
1

1.055 10−34
5.06 10−19 · 2.78 108 · sin(2.78 108 k)

= 1.33 10−24 · sin(2.78 108 k) m/s

From the dispersion relation Emin = E0+A (1−(max of cosine)) =
E0, Emax = E0 + A (1 − (min of cosine)) = E0 + 2A The width of
the conduction band is ∆E = Emax − Emin = 2A. For je the limits
of the integration are k values corresponding to the minimum and
the half of the band. The minimum is E0, where the cosine is 1, i.e.

kmin = 0, while the half of the band is E0 +
1

2
∆E = E0 + A which

means the cosine is zero, i.e. kmax =
π

2α

je = − e

2π~

∫ π
2α

0

Aαsinα k dk

= − e

2π~
A [−cos α k]

π
2α
0

= +
e

2π~
A (0− 1) = − eA

2π~

= −2 · 1.6 10−19 5.06 10−19

π 1.055 · 10−34

= −4.894 10−4A/m2

(−1.984 10−4A/m2 for the wrong factor)

and jh = −je = +4.894 10−4A/m2
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64. Calculate the electron mobility in silver using the Drude model; knowing the
following parameters:. at T=293 K conductivity: σ = 6.8 107 S/m, mass den-
sity: ρm = 19.5g/cm3, atomic weight: A = 107.88 g/mol. and as an average
every silver atom yields na = 1.3 conduction electrons.

Solution:
The conduction electron density equals to the number of electrons
in a V volume of silver divided by the volume:

n =
n(V )

V
=

1

V

V ρm
A

LA na =
19.5g/cm3

107.88 g/mol
· 6.022 10231/mol · 1.3

= 1.415 · 1023 1/cm3 = 1.415 · 1029 1/m3

The mobility:

µ =
σ

n e

(
=

σ A

e ρm LA na

)
=

6.8 · 107

1.6 · 10−19 · 1.415 · 1029
= 2.999 · 10−3 · m

2

V s

65. Copper has the electron configuration [Ar] 3d10 4s1, an atomic weight of 0.06355 kg/mol,
a density of 8960 kg/m3, and a conductivity of 5.960 ·107 S/m. Calculate the
electron mobility in copper. Assume that the valence electrons of each atoms
are free.

Solution:
The number of copper atoms per m3 is

na = 6.021023 atoms/mol · 1/0.06355 mol/kg · 8960 kg/m
3

= 8.491 · 1028 atoms/m
3

and this equals to the electron density. The mobility:

µ =
σ

ne
=

5.960 · 107

8.491 · 1028 · 1.6022 10−19
= 4.381 · 10−3

m2

V s

66. Calculate the distance of the (123) lattice planes in a simple cubic lattice if
the lattice constant is 5 nm!

Solution:
The distance of the lattice planes (hkl) can be calculated using the
length of the reciprocal vector ghkl:

dhkl =
2π

|ghkl|
=

1√
h2

a21
+ k2

a22
+ l2

a23

Now a1 = a2 = a3 = 5nm, so dhkl = 5√
12+22+32

= 1.34nm

67. Determine the distance between neighboring (110) lattice planes in an fcc
lattice if the lattice constant is 0.483 nm.

Solution:
a) using the Bravais cell
the (110) planes are perpendicular to the bottom plane of the cell
determined by a1 and a2 and one of them goes through the face
diagonal. The nearest parallel lattice planes go through the center
points of the faces perpendicular to bottom face. Therefore they di-
vide the face diagonal in 4 equal part, so the distance of these is one
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quarter of the face diagonal: a
√

2 /4 = 0.1708nm
b) using the primitive cell
in this case the the three primitive vectors may point to the center
points nearest to the corner of the fcc cube selected as the origin.
They are perpendicular to each other (which can easily be proved by
writing the base vectors as linear combinations of unit vectors in a
Cartesian system) and have a length of 1/2 of the body diagonal.
The (100) plane then again perpendicular to the plane of a1 and a2
and the distance of two neighboring plane is the face diagonal of the
cube created by a1, a2 and a3: |a1|

√
( 2) = a/4 ·

√
( 2) = 0.1708nm

68. Determine the possible diffraction angles for a 25 keV X-ray from the (100)
planes of a bcc lattice, if the lattice constant is a = 4.7 Å.

Solution:
The wavelength of the X-ray:

E = h ν =
h c

λ
⇒ λ =

h c

E
= 4.96 10−11m

Bragg’s law:
2 d sinθ = nλ

The distance between planes (100) is d =
a

2
= 0.235nm.

The possible diffraction angles are determined by:

sinθ = n
λ

2 d
= n · 4.96 10−11

2 · 0.235 · 10−9
= n · 1.055 · 10−1 = 0.106 · n

Here n = 1, 2, 3, 4, i.e. the angles are

6.05o, 12.18o, 18.45o, 24.97o, 31.84o, 39.28o, 47.71o, 5758o and 71.74o

69. In a direct gap intrinsic semiconductor the dispersion relation near the band
edges can be approximated by the form Ev,c(k) = Av,c k

2 +Bv,c, where Av,c,
and Bv,c are constants, and the indices c and v denotes the band. Determine
these four constants, knowing that the band gap is 0.9 eV and the effective
masses in the bands are

m
(c)
eff = −0.832 ·me,m

(v)
eff = 1.260 ·me

Solution:
Select the energy zero be at the top of the valence band, then
Bc ≡ Egap = 0.9 eV = 1.442 · 10−19 J and Bv = 0.

An equivalent solution would be: Bc − Bv = 0.9 eV From the defi-
nition of the effective mass:

1

meff
=

1

~2
d2E
dk2

With E in the given form the second derivative is 2Ac,v

1

m
(c,v)
eff

=
1

~2
2Ac,v
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Ac =
~2

2m
(c)
eff

= −7.337 · 10−39 J m2

Av =
~2

2m
(v)
eff

= 4.845 · 10−39 J m2

70. The Zeeman components of a 500 nm spectral line are 0.0116 nm apart when
the magnetic field is 1.00 T. Find the e/me ratio for the electron from these
data.

Solution:
The magnitude of the energy shift from the given ∆λ value is

∆EB = h∆ ν = h

(
c

λ2
− c

λ1

)
=

c h

λ1 λ2
(λ1 − λ2) = −c h∆λ

λ1 λ2

Where λ1,2 = λ±∆λ/2. But ∆λ� λ therefore in the denominator
λ1 λ2 ≈ λ2.

|∆EB | =
h c∆λ

λ2
=

6.63 · 10−34 · 3 · 108 · 0.0116 · 10−9

(500 · 10−9)2
= 9.22 10−24J

For the Zeeman effect

∆EB =
e

2me
L ·B

e

me
=

2 |∆EB |
L ·B

Substituting ∆EB and taking L and B parallel, B = 1T and L = 1 ~

e

me
=

2 · 9.22 · 10−24

1.05 · 10−34
= 1.748 1011

The exact value is 1.76 1011
71. The conductivity of silver is 6.8 107 S/m at T=293 K. The density of silver

is 10.5 g/cm3. Every silver atom gives an average of 1.3 conduction electrons.
The atomic weight of silver is 107.88 g/mol. Calculate the electron mobility
in silver using the Drude model.

Solution:

µ =
σ

n e

Notations: Let m1,M and M1 denote the mass of 1 mol (i.e. LA
atoms), mass of 1 kmol (i.e. L :  LA · 1000 = 6.022 · 1026 atoms)
and M1 mass of 1 m3 of Ag respectively, while let s := 1.3 to be the
number of electrons from one atom, and Nkm the number of moles
in 1 m3 of Ag! ρ = 10.5g/cm3 = 10.5kg/m3, m = 107.88g,M =
107.88kg, M1 = ρ · 1m3 = 10, 500 kg, Nkm = 10 500/107.88 =
97.3 kmol. We only need to calculate the n electron density:

n =
number of electrons in a given volume

volume
= N1 · L · s
= 97.3 · 6.022 · 1026 · 1.3 = 7.62 · 1028 1/m3
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The mobility:

µ =
σ

n e
=

6.8 107

7.62 · 1028 · 1.6 10−19
= 5.57 · 10−3

m2

V s

72. The conductivity of silver is 6.8 107 S/m at T=293 K. The density of silver
is 19.5 g/cm3. Every silver atom gives an average of 1.3 conduction electrons.
The atomic weight of silver is 107.88 g/mol. Calculate the electron mobility
in silver using the Drude model.

Solution:
A cubic meter of silver has a mass of 19,500 kg.
A kg-mole of silver weighs 107.88 kg.
So a cubic meter contains 19 500/107.88 = 180.76 kg–moles of sil-
ver.
A kg-mole of anything contains 6.023 · 1026 atoms (or molecules).
So a cubic meter of silver contains 180.76 · 6.023 1026 = 1.0885 1029

atoms
So it contains 1.3 · 1.0885 1026 = 1.4151 1029 electrons
The mobility:

µ =
σ

n e
=

6.8 107

1.4151 1029 · 1.6 10−19
= 2.999 10−3

m2

V s

(The number 19.5 g/cm3 was a typing error as the correct density
of silver is 10.5 g/cm3. With the correct density the result would be
5.57 10−3m2/V s )

73. The dispersion relations of electrons in the valence and conduction bands near
the band edges are approximated by the following functions:

Ev(k) = −3.024 10−20(k − 2.45108)2 + 13 [eV ]

Ec(k) = 4.65 10−20k2 + 11.9 [eV ]

Express the effective masses of electrons in units of the free electron mass
me = 9.1 · 10−31kg.

Solution:
In 1D

1

meff
=

1

~2
d2E(k)

dk2

The energies (in eV) converted to Joule are:

Ev(k) = 4.845 10−39(k − 2.45108)2 + 2.08 · 10−18 [J ]

Ec(k) = −7.450 10−39k2 + 1.91 · 10−18 [J ]

The second derivative of both functions gives twice the coefficient
of the 2nd order terms, and so the electron effective masses in the
conduction and valence bands are:

m
(c)
eff =

~2

1.490 · 10−38
= 7.46 · 10−31[kg] = 0.819me

m
(v)
eff = − ~2

9.690 · 10−39
= −1.14 · 10−30[kg] = −1.260me
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74. The donor concentration in an n-type silicon cube of sides l = 0.7cm is 2.5 1015

atom/cm3, (the density of Si atoms is 5 1026 atom/m3) A voltage of 1.5
V is applied between two opposite faces of the cube. Determine the hole
concentration, the resistivity and the current through this cube. The intrinsic
electron concentration in silicon is ni = 1.5 1016m−3. The electron mobility is
µe = 0.13m2 V −1 s−1.

Solution:
n-type: Na ≈ 0, nc = Nd = 2.5 1021atom/m3

pv = n2i /Nd = 9 10101/m3, because
pv � nc ⇒ σ = e nc µe = 5.207 103 S/m⇒ ρ = 1/σ = 0.000192 Ωm
I = U/R = U σA/l = U σ l2/l = U σ l = 1.5 · 5.207 103 · 0.007 =
7.8 10−1A

75. The donor concentration in an n-type silicon cube of sides l = 0.7cm is 2.5·1015

atom/cm3, (the density of Si atoms is 5 · 1026 atom/m3) A voltage of 1.5
V is applied between two opposite faces of the cube. Determine the hole
concentration, the resistivity and the current through this cube. The intrinsic
electron concentration in silicon is ni = 1.5 · 1016m−3. The electron mobility
is µe = 0.13 ·m2 · V −1 · s−1.

Solution:
In an n-type semiconductor Na ≈ 0 and nc = Nd = 2.5·1021atom/m3.
From the law of mass action

nc · pv = const = n2i i.e.

pv = n2i /Nd = 9 · 10101/m3

As pv � nc, so approximately

σ = e nc µe = 52.07S/m⇒ ρ =
1

σ
= 1.92 · 10−2 Ωm

I = U/R = U σA/l = U σ l2/l = U σ l

= 1.5 · 52.07 · 0.007 = 0.55A

76. The lattice constant of a bcc lattice is a = 0.352nm. Calculate the atom
density on lattice planes (100) and (110)!

Solution:
There are 4 atoms on the (100) plane, 1/4th of each belongs to this
cell:

ρ =
1atom

a2
= 8.071

1

nm2
= 8.071 · 1018

1

m2

There are 5 atoms on the (110) plane. 1/4th of the corner atoms
plus the center atom belong the the cell:

ρ =
2√

2 a2
= 11.41

1

nm2
= 1.141 · 1019

1

m2

77. The lattice constant of an fcc lattice is 0.228 nm. Calculate the surface density
of atoms for lattice planes (001) and (110).

Solution:
• Plane (001) is the plane that goes through one face of the cube

There are 5 atoms in this plane but only 1/4th of the 4 corner
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atoms, and the middle atom belong to this cell therefore the
total number of atoms on this plane that belong to the face of
the cube is 2.
The area is a2 = 5.20 10−20m2, the atom density :

na = 2/a2 = 3.846 · 1019m−2 = 38.46nm−2

• The (110) plane goes through the face diagonal. It contains
4 · 1/4 = 1 atoms at the corners and 2 · 1/2 = 1 atom at the
center. The area of a ·a

√
2 = 7.352 10−20m2, the atom density

is: na = 2/7.352 10−20 = 2.72 1019m−2 = 27.2nm−2.
78. The lattice constant of an fcc lattice is 0.228 nm. Calculate the surface density

of atoms for lattice planes (100) and (110).
Solution:
• Plane (100) is the plane that goes through one face of the cube

There are 5 atoms in this plane but only 1/4th of the 4 corner
atoms, and the middle atom belong to this cell therefore the
total number of atoms on this plane that belong to the face of
the cube is 2.
The area is a2 = 5.20 10−20m2, the atom density :

na = 2/a2 = 3.846 · 1019m−2 = 38.46nm−2

• The (110) plane goes through the face diagonal. It contains
4 · 1/4 = 1 atoms at the corners and 2 · 1/2 = 1 atom at the
center. The area of a ·a

√
2 = 7.352 10−20m2, the atom density

is: na = 2/7.352 10−20 = 2.72 1019m−2 = 27.2nm−2.
79. The lattice constant of an fcc lattice is 0.34 nm. Calculate the surface density

of atoms for lattice planes (010) and (101).
Solution:
• Plane (010) is the plane that goes through one face of the cube

There are 5 atoms in this plane but only 1/4th of the 4 corner
atoms, and the middle atom belong to this cell therefore the
total number of atoms on this plane that belong to the face of
the cube is 2.
The area is a2 = 1.16 10−20m2, the atom density :

na = 2/a2 = ·1019m−2 = 173nm−2

• The (101) plane goes through a face diagonal. It contains 4 ·
1/4 = 1 atoms at the corners and 2 · 1/2 = 1 atom at the
center. The area of a ·a

√
2 = 1.635 10−19m2, the atom density

is: na = 2/1.635 10−19 = 1.223 1019m−2 = 12.23nm−2.
80. The lattice constant of an fcc lattice is 0.457 nm. Calculate the surface density

of atoms for lattice planes (100) and (110).
Solution:
a) The Lattice plane (100) is the plane that contains one face of the
cube There are 5 atoms in this plane but only 1/4th of 4 of them
belongs to this cell therefore the total number of atoms on this plane
that belongs to the cube is 2, the area is a2 = 2.088 10−19m2, the
atom density is 2/a2 = 9.58 10181/m2

20



b) The (110) plane goes through the face diagonal. It contains 4 ·
1/4 = 1 atoms at the corners and 2·1/2 = 1 atom at the diagonal an
area of a ·a

√
2 = 2.95 10−19m2, the atom density is: 2/2.95 10−19 =

6.77 10181/m2.
81. The part of the EM radiation we call visible light is in the wavelength range

of 400 . . . 600nm. Are the following crystals

material Band gap (eV)
Aluminum nitride 6.0
Diamond 5.5
Silicon dioxide 9.0
Copper oxide 1.1

transparent in this frequency range?
Solution:
The energy range for visible light is

Emin = h νmin =
h c

λmax
=

=
6.626 · 10−34 · 2.998 · 108

6 · 10−7

= 3.311 · 10−19 J = 2.066 eV

Emax = h νmax =
h c

λmin
=

=
6.626 · 10−34 · 2.998 · 108

4 · 10−7

= 4.966 · 10−19 J = 3.100 eV

All of these materials are insulators, they have a full valence band,
therefore to absorb EM radiation the EM wave must be able to ex-
cite electrons from the top of the valence band through the gap. It
follows that only materials with a band gap wider than 3.10 eV are
transparent in the whole visible range, therefore

material transparent
Aluminum nitride yes
Diamond yes
Silicon dioxide yes
Copper oxide no

(Remark: real crystals mus always contain vacancies, which creates
levels in the gap, therefore thick slabs of these materials are not
necessarily transparent.)

82. The un-normalized wave function of an electron is ψ(x) = 12x2−8x Calculate
the kinetic energy of this electron.

Solution:
The kinetic energy is determined from the formula:

< Ekin >=

∫∞
−∞ ψ∗(x) p̂2

2me
ψ(x)dx∫∞

−∞ ψ∗(x)ψ(x)dx

where the denominator contains the normalization factor. For our
wave function both integrals are infinite, so this function is not a
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physical wave function in the whole space. After integration the nu-
merator contains 3rd an 2nd powers of x, while the one in the de-
nominator (the normalization factor) contains 5th and 4th power of
x too. If we now set the limits of the integration to ±a and calculate
the limit of this fraction as a tends to ∞ we may see that the de-
nominator goes faster to infinity than the numerator does, i.e. the
value of kinetic energy tends to 0.

83. The width of the band gap in silicon is about 1.1 eV. Calculate the ratio of
probabilities of electron excitation from the valence to the conduction band
in Si at room temperature and at 430 oC!

Solution:
The temperatures are: Troom = 293K (or 300K), T430C = 503K,
the width of the gap is ∆ Eg = 1.1 eV = 1.76·10−19 J The probability

is proportional to the Boltzmann-factor: P(T ) ∝ e
−

∆ Eg
kB T

P(293) ∝ e
−

1.76 · 10−19

1.38 · 10−23 · 293 = 1.20 · 10−19 (or 3.32 · 10−19)

P(503) ∝ e
−

1.76 · 10−19

1.38 · 10−23 · 503 = 9.74 · 10−12

P(503)

P(293)
= 7.80 · 107 (or 2.83 · 107)

84. We model the vibrations of an infinite 3D crystal with a 3D set of just 27
atoms using periodic boundary conditions. How many optical branches are in
the dispersion relation?

Solution:
For N atoms there are 3N branches of the dispersion relation 3 of
them is in the acoustic branches, therefore there are 3(N − 1) in
the optical branches. In our case N = 27 so there are 78 optical
branches.

85. What are the Miller indices of the following plane? Determine the distance
between two such neighboring planes, if all three the lattice constants are
0.372 nm.

Solution:
The intersection points of the plane with the axes are

(a1
2
, a2,∞

)
1

so the Miller indices are (210) The next two parallel planes nearest
to this plane go through the point pairs (0, 0, 0) and (−a1/2,−a2, 0)
or (a1, 0, 0) and (a1/2,a2, 0). Because all lattice constants are the
same the distance between these two planes is

d =
a√

k2 + l2 +m2
=

a√
22 + 12 + 0

=
a√
5

or equivalently (see figure):

d

a/2
=

a√
a2 + (a/2)2

⇒ d =
a√
5

= 0.166nm

1.
(a1

2
, a2, none

)
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86. What are the Miller indices of the plane given by the following 3 vectors: 4a1,
3a2 and 2a3 ?

Solution:
The vectors marks the intersections with the three axes at 4 a1, 3 a2
and 2 a3. Then the inverse intercepts in lattice vector units are:

1

4
,

1

3
,

1

2

To get integer numbers we have to calculate the lowest common
denominator of this fraction, which is 12. Multiplying each fraction
with 12 gives the three Miller indices: (346)

87. What are the Miller indices of the plane on the next figure:
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Solution:
The axes cross the plane at 4a1, 6a2 and 3a3. The reciprocals:

1

4
,

1

6
,

1

3

multiply with the least common denominator which is 12 ⇒ The
Miller indices are (324).

88. What is the acceleration voltage in an electron gun, if the average wavelength
of the emitted electrons is 3.1 nm?

Solution:

p =
h

λ
, E =

p2

2me
= e∆U ⇒ ∆U =

p2

2me e
=

h2

2me e λ2

∆U =
(6.63 10−34)2

2 · 9.1 10−31 · 1.6 10−19 · (3.1 10−9)2
= 0.16V

89. What is the distance between lattice planes (234) if the base vectors are
0.41nm, 0.52nm and 0.43nm long

Solution:
Distance of the lattice planes is

dhkl =
2π

|ghkl|
=

1√
h2

a21
+ k2

a22
+ l2

a23

In our case

d234 =
1√

4
0.412 + 9

0.522 + 16
0.432

= 0.08345nm

90. What is the donor concentration in n-type silicon if when a voltage of 1.5 V
is applied between two opposite faces of a cube of this material with sides
l = 0.7cm a current of 109.35mA flows through it? The intrinsic electron
concentration in silicon is ni = 1.5 1016m−3, while the electron mobility is
µe = 0.13m2 V −1 s−1.
(for comparison: the density of Si atoms is 5 1026 atom/m3)

Solution:
Let Nd be the unknown donor concentration!

R =
U

I
=

1.5

0.10935
= 13.718 Ω and

R = ρ · `
A

=
1

σ
· �̀
`�2

=
1

σ · `

σ =
1

R · `
But in an n-type semiconductor Na ≈ 0, nc = Nd, thus σ = e nc µe,
where nc is the concentration of the conduction electrons. Therefore

e nc µe = eNd µe =
1

R · `

Nd =
1

e · µ ·R · `
= 5.000 · 1020m−3
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91. What is the lattice constant of a simple cubic lattice if the distance between
two neighboring (111) planes is 0.2 nm?

Solution:
In an sc crystal all 3 lattice constans are the same. The distance of
two lattice planes with the Miller indices (hkl) is dhkl = a√

h2+k2+l2
,

where a is the lattice constant. From this formula: a = dhkl·
√
h2 + k2 + l2 =

0.2 ·
√

3 = 0, 34nm
92. What is the quasi-free electron density in copper? Calculate the Fermi velocity

and momentum too! The Fermi energy of copper is EF = 4.1eV .
Solution:

Ne = 2
k3F
6π2

V ⇒ n(≡ Ne
V

) =
k3F
3π2

EF (= Emax,occupied) =
~2π2

2mea2
s

2

n =
(2me EF )3/2

2π2 ~3
= 5.655 1028

electron

m3

vF = 1.2 106m/s = 0.004 c kF = 1.0 10111/m
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