
1 Theoretical questions

(answer them in short and clear sentences including the necessary formulas when
needed)

1. According to (classical) electrodynamics an accelerating charge loses energy
by radiation. Explain why does the electron not radiate energy in a stationary
state of an atom. Is (classical) electrodynamics wrong?

Solution:
Electrodynamics is correct, however the electron does not accelerate
in stationary states.

2. “Although the electron is either a wave or a particle at any given time, but
when we perform a measurement we force the electron to randomly jump into
either one of these states.” – Is this statement true or not? Explain!

Solution:
The electron is neither a wave nor a particle independent of any
measurements. Measurements determine what properties of the elec-
tron we observe.

3. Define the Fermi energy for a system of electrons!
Solution:
The Fermi energy is the energy up to which at T = 0K all energy
levels are occupied but above which all are empty.

4. Enumerate the phenomena that lead to the development of quantum physics.
Solution:
• Black body radiation
• (external) Photoelectric effect
• Compton effect
• Stability of atoms
• Line spectrum of atoms
• Frank-Hertz experiment

5. Give the time independent Schrödinger equation of a one dimensional linear
harmonic oscillator and sketch the wave functions for the first 3 energy states!

Solution:

− ~
2me

d2

d x2
ψ(x) +

1

2
me ω

2 ψ(x) = i ~
dψ(x)

dt

6. How can we determine the solution of the time-dependent Schrödinger equa-
tion from the solutions of the stationary equation?

Solution:
The eigenfunctions of the time dependent Schrödinger equation are
the product of the eigenfunctions of the corresponding stationary
Schrödinger equation and the function e−E/~ t. Therefore the so-
lution of the time dependent equation may be written as a linear
combination of such products.
In 1D e.g.:

ψ(x, t) =
∑
E

φE(x)e−E/~ t
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Figure 1: Wave function and probability densities for the linear harmonic oscillator

7. How many ways can the orbital angular momentum of an electron on the 2p
shell be positioned ?

Solution:
The total angular momentum on a p shell is ` = 1 independently
of the principal quantum number, therefore it can be positioned in
2 ∗ `+ 1 = 3 ways only.

8. In a double slit experiment let the wave function of an electron going through
slit number 1 be ψ1(r, t) and for the one through slit 2 be ψ2(r, t). What is
the probability that the electron hits a given point P (r, t) of the screen?

Solution:
The probability is |ψ1(r, t) + ψ2(r, t)|2.

9. In a double slit experiment we determine which slit an electron went through
by illuminating it with light. Let the wave function of an electron going
through slit number 1 be ψ1(r, t) and for the one through slit 2 be ψ2(r, t).
What is the probability that the electron hits a given point P (r, t) of the
screen?

Solution:
The probability is |ψ1(r, t)|2 + |ψ2(r, t)|2.

10. In the double slit experiment let the wave function of an electron be ψ1(r, t)
when slits #1 is blocked and ψ2(r, t) when slit #2 is blocked . Is the statement
“The probability that the electron hits a given point of the screen when both
splits are open is |ψ1(r, t)|2 + |ψ2(r, t)|2.” true or false and why? Explain!

Solution:
False. The probability is |ψ1(r, t)+ψ2(r, t)|2, because the probability
is not the sum of the individual probabilities.

11. “In the double slit experiment let the wave function of an electron going
through slit number 1 is ψ1(r, t) and for the one through slit 2 is ψ2(r, t). Then
the probability that the electron hit a given point of the screen is |ψ1(r, t)|2 +
|ψ2(r, t)|2.” – Is this statement true or not? Explain!

Solution:
False. The probability is |ψ1(r, t) + ψ2(r, t)|2.

12. In the photoelectric effect if we increase the frequency of the incident light
the number of the emitted electrons will or will not change?

Solution:
The number of emitted electrons will not change, only the velocities
of the emitted electrons changes
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13. In the photoelectric effect if we increase the intensity of the incident light the
velocity of the emitted electrons will or will not change?

Solution:
The velocity of the emitted electrons will not change, only the num-
ber of the emitted electrons changes.

14. Is it always true that the wave function of a system of electrons must be
antisymmetric for the exchange of the coordinates of two electrons? Explain.

Solution:
False. The total wave function (including the spin) of a system of
electrons must always be antisymmetric to the exchange of the co-
ordinates of two electrons. This wave function can be written as a
product of two functions. One that depend on the spatial coordinates
of the electrons the other one depends on their spin. So when the
spin dependent part is antisymmetric the spatial coordinate depen-
dent part must be symmetric.

15. Is there a contradiction between electrodynamics and the electron not radi-
ating in a stationary state in an atom? – Explain!

Solution:
There is no contradiction. Electrodynamics is applicable, but the
electron does not accelerate in stationary states.

16. Is there any system in which the eigenvalues of the Schrödinger equation are
not discrete? If you answer “yes” give an example, if you answer “no” explain
it why!

Solution:
Yes, there is. For free electrons the energy spectrum is continuous.
(For electrons enclosed even in a very big potential box the energy
states are discrete, however this discreteness cannot be measured if
the dimensions of the box are large enough.)

17. Is the statement “Because a black-body absorbs all radiation it will always
look black, darker than any other object.” true or false? Explain!

Solution:
False. The color depends on the temperature and at any given tem-
perature the black-body is brighter than non black-bodies

18. What is the difference between the behavior of a classical particle and a wave?
What is the wave-particle duality?

Solution:
A classical particle has a well defined position and velocity (mo-
mentum), i.e. a well defined trajectory. A classical wave presents
diffraction and interference phenomena. Wave particle duality - un-
der suitable circumstances the quantum mechanical particle behaves
like either a wave or a particle.
Background info: the particle’s behavior is described by a proba-
bility (density) wave whose absolute square gives the probabilities.
When in a process the probabilities can be added to get the resultant
probability (example: two electrons in two separate atoms, when the
electronic wave functions do not interlap) then the particle behaves
like a classical particle, and when the amplitudes of the waves must
be added to get the resulting amplitude (example: 2 slits experiment)
we got diffraction.
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19. What is the ratio of population between two energy levels in thermal equilib-
rium?

Solution:
ni
nj

=
gi
gj
· e−

∆E
kBT

20. Is the statement “The electron is either a wave or a particle depending on the
measurement we perform.” true or false? Explain!

Solution:
The electron is neither a wave nor a particle independent of any
measurements. Measurements determine what properties of the elec-
tron we observe.

21. “Observable electron interference patterns are formed only when there are
many electrons present in a system at the same time and they interact with
each other. A series of non-interacting single electrons does not create an in-
terference pattern, no matter how many electrons are used” – Is this statement
true or not? Explain!

Solution:
False. Interference patterns are formed, because every electron has
a wave like state function. It doesnt matter how many electrons are
simultaneously present, every electron interfere with itself.

22. Select the right hand side of the one dimensional (time dependent) Schrödinger
equation from the following:

a)
~
i

∂ E

∂ x
, b)

~
i

∂ ψ

∂ x
, c)i ~E, d)i ~

∂ ψ

∂ t

Solution:
d)

23. Select the right hand side of the one dimensional time dependent Schrödinger
equation from the following:

a)i ~
∂ ψ

∂ t
, b)

~
i

∂ E

∂ x
, c)i ~E, d)

~
i

∂ ψ

∂ x
,

Solution:
a)

24. What is tunneling? Give the most important characteristics.
Solution:
Tunneling is the phenomena when a particle, with a total energy
less than the potential in a region of space still may pass through
this region, although in classical mechanics this would be impossible.
In 1D the transition probability decreases fast when either the width
of the region or the height of the potential barrier increases.

25. What physical quantity do we call “potential” in quantum mechanics
Solution:
The “potential” in quantum mechanics is called the potential energy
in classical physics.

26. Sketch the radial part of the wave function of the hydrogen atom for n=1 and
n = 2!.

Solution:

4



27. “The black-body absorbs all radiation therefore it will always look black” –
Is this statement true or not? Explain!

Solution:
False. The color depends on the temperature and at any given tem-
perature the black-body is brighter than non black-bodies

28. “The eigenvalues of the Schrödinger equation are always discreet.” – Is this
statement true or not? Explain!

Solution:
False. For free electrons the energy spectrum is continuous.

29. “The electron is a particle which has some wave characteristics.” – Is this
statement true or not? Explain!

Solution:
False. The electron is a quantum mechanical object which has char-
acteristics of both classical waves and particles.

30. The electron is characterized by the wave function. Can we measure the wave
function itself or if not what do we measure then?

Solution:
We do not measure the wave function. We measure physical quan-
tities like position, momentum, energy, etc. The absolute square of
the wave function determines the probability of the result of a posi-
tion measurement.

31. The electron is characterized by the wave function, but we do not measure
the wave function itself. What do we measure then?
Explain!

Solution:
We measure physical quantities like position, momentum, energy,
etc. We can also measure the absolute square of the wave function
when we measure the position of the electron.

32. The electron is characterized by the wave function, but we never measure the
wave function itself. What do we measure then? Explain!

Solution:
We measure physical quantities like position, momentum , energy,
etc. We can measure the absolute square of the wave function when
we measure the position of the electron.

33. “The electron is either a wave or a particle, depending on the type of the
actual interactions with the environment.”
– Is this statement true or not? Explain!

Solution:
False. The electron is neither a wave nor a particle independent
of any interactions. It is a quantum mechanical object which has
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characteristics of both of these classical notions.
34. “The energy of a bound electron (i.e. an electron restricted in space) in quan-

tum mechanics is always discreet.”
– Is this statement true or not? Explain!

Solution:
True. Bound states means the wave function must vanish toward
infinity. This restricts the possible energy values. For free electrons
no such condition exists.

35. “The energy of an electron in quantum mechanics is always discreet.”
– Is this statement true or not? Explain!

Solution:
False. For free electrons the energy spectrum is continuous.

36. “The (ideal) black body got its name for only absorbing but not emitting
electromagnetic radiation.”
– Is this statement true or false? Explain!

Solution:
The statement is false: black bodies are called ”black” only to show
that they absorb all electromagnetic radiations. In thermal equilib-
rium they emit the same amount of radiation they absorb.

37. We know all of the stationary φn(r) eigenfunctions and En eigenvalues of a
Hamiltonian and we know the actual ψ(r) = ψ(r, 0) function of a system at
t = 0. Write the formula for the time dependent ψ(r, t) wave function!

Solution:
The known ψ(r) function is a linear combination of the φn(r) eigen-
functions of the Hamiltonian.

ψn(r) =
∑
n

Cn φn(r)

Each φn(r) solutions of the stationary Schrödinger equation when
multiplied by e−En/~ t becomes the solution of a time-dependent
Schrd̈inger equation. So to get the time dependent wave function
corresponding to ψn(r, t) we have to write:

ψn(r, t) =
∑
n

Cn φn(r)e−
En
~ t

38. What are selection rules and what do they mean?
Solution:
Selection rules constrain the possible transitions of a system. They
can be formulated for electronic, vibrational or rotational transi-
tions. Examples: for electronic transitions the total angular mo-
mentum difference between the initial and final states must be an
integer multiple of ~. Transitions prohibited by a selection rule may
still happen by allowing other kind of interactions taking place. Usu-
ally these transitions have a much smaller probability than the one
prohibited by the selection rule.

39. What are the assumptions of the Bose-Einstein and of the Fermi-Dirac statis-
tics?

Solution:
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Both statistics are valid for indistinguishable particles. Fermi-Dirac
statistics is valid for half-spin particles called fermions (like elec-
trons) where no two particle may occupy the same quantum state,
while Bose-Einstein statistics is valid for particles of integer spin
(bosons), where any number of particles may be in the same quan-
tum state.

40. What are the possible values of the total angular momentum for a single
electron on an s shell?

Solution:

` = 0,m = 0, s = −1

2
,

1

2
⇒ J = L+ S : −1

2
,

1

2
41. What are the possible values of the total angular momentum for a single

electron on a p shell?
Solution:

` = 1,m = −1, 0, 1, s = −1

2
,

1

2
⇒ J = L+ S : −1

1

2
,−1

2
,

1

2
, 1

1

2

and the values −1

2
,

1

2
correspond to degenerate levels (−1

2
= −1+

1

2

or −1

2
= 0− 1

2
)

42. What do we call an atomic orbital? What is a molecular orbital?
Solution:
An atomic orbital is the wave function of the electron inside the
atom. The molecular orbital is the same for a molecule. (In chem-
istry the same term may be applied to the region of space where the
electron is found with suitable high (e.g. 90%) probability.)
Background info:

43. What is Raman scattering?
Solution:
Raman scattering is the inelastic scattering of light on particles
much smaller than their wavelengths. The wavelength of the scat-
tered light is different from that of the incident light.

44. What is Rayleigh scattering?
Solution:
Rayleigh scattering is the elastic scattering of light on particles much
smaller than their wavelengths. The wavelength of the scattered light
is the same as that of the incident light.

45. What is hybridization?
Solution:
Hybridization means the mixing of atomic orbitals to create orbitals
which qualitatively describe the atomic bonding in molecules. Their
name is derived from the corresponding atomic orbitals used. Ex-
ample: an sp3 orbital is the linear combination of one s and 3 p
orbitals (like in CH4)

46. What is quantum tunneling?
Solution:
It is enough to give either the definition or a drawing A micro-
scopic particle (e.g. an electron) may travel through a region (po-
tential wall) where the potential is higher than the total energy of
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the particle if the width of the wall is sufficiently small.

ln(Probability of transfer) ≈ −2

√
2me Vo − E

~
(width of wall)

Figure 2: Quantum tunneling

47. What is the Fermi energy?
Solution:
For a system of electrons in a box it is the energy up to which all
energy levels are occupied and above which all are empty at T = 0K.

48. What is the Raman and what is the Rayleigh scattering?
Solution:
Raman scattering is the inelastic scattering of light on particles
much smaller than their wavelengths. Rayleigh scattering is the elas-
tic scattering.

49. What is the difference between the behavior of a classical particle and a wave?
What is the wave-particle duality?

Solution:
A classical particle has a well defined position and velocity (mo-
mentum), i.e. a well defined trajectory. A classical wave presents
diffraction and interference phenomena. Wave particle duality - un-
der suitable circumstances the quantum mechanical particle behaves
like either a wave or a particle.
Background info: the particle’s behavior is described by a proba-
bility (density) wave whose absolute square gives the probabilities.
When in a process the probabilities can be added to get the resultant
probability (example: two electrons in two separate atoms, when the
electronic wave functions do not interlap) then the particle behaves
like a classical particle, and when the amplitudes of the waves must
be added to get the resulting amplitude (example: 2 slits experiment)
we got diffraction.

50. What is the meaning of the term “spin-orbit interaction”?
Solution:
In electronic states with non zero angular momentum there is a non
zero B ( L) magnetic field in the coordinate system attached to the
electron. This magnetic field interacts with the magnetic momentum
that corresponds to (and proportional to) the electron spin S.
The interaction energy therefore ESL = constSL.

51. What is the physical meaning of the wave function?
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Solution:
The absolute square of the wave function integrated over an interval
gives the probability the electron is found in that interval. Therefore
the integral of the absolute square of the wave function for the whole
space is 1.

52. What is the physical meaning of the wave function (Coppenhagen interpreta-
tion) ?

Solution:
Integrating the absolute square of the wave function of a particle
over an interval gives the probability of finding the particle in that
interval. (Therefore the integral of the wave function for the whole
of space is equal to 1.

53. What is the physical reason of the spin-orbit interaction (or spin-orbit cou-
pling) ?

Solution:
The coupling of the magnetic moments associated to the spin ad the
orbital angular momentum.

54. What is the spin-orbit interaction (or spin-orbit coupling) ?
Solution:
It is the coupling of the magnetic moments associated to the spin
and the orbital angular momentum.

55. What is tunneling? Give the most important characteristics.
Solution:
Tunneling is the phenomena when a particle, with a total energy
less than the potential in a region of space still may pass through
this region, although in classical mechanics this would be impossible.
In 1D the transition probability decreases fast when either the width
of the region or the height of the potential barrier increases.

56. What physical quantity do we call “potential” in quantum mechanics
Solution:
The “potential” in quantum mechanics is called the potential energy
in classical physics.

57. Where is the Fermi level in an a) intrinsic, b) extrinsic semiconductor at
T=0K?

Solution:
In intrinsic semiconductors in the middle of the energy gap, in ex-
trinsic semiconductors in the middle between the impurity (donor or
acceptor) levels and the nearest band edge (conduction and valence
band respectively).

58. Which of the following appears on the right hand side of the one dimensional
(time dependent) Schrödinger equation:

a)
~
i

∂ E

∂ x
, b)

~
i

∂ ψ

∂ x
, c)i ~E, d)i ~

∂ ψ

∂ t

Solution:
d)

59. Why is state 2s called a metastable state in a hydrogen atom?
Solution:
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The transition 2s → 1s is forbidden because in the first order
(dipole) approximation only transitions between states whose an-
gular momentum difference is (±1~) are allowed (the photon has a
spin of 1) and states 2s and 1s have the same l = 0 angular mo-
mentum. This transition may nevertheless occur, albeit with a far
smaller probability, because higher order (non dipole) processes may
also take place.

60. Write down the 1 dimensional time dependent Schrödinger equation and ex-
plain the various terms!

Solution:

− ~
2me

d2

d x2
ψ(x) + V (x)ψ(x) = i ~

dψ(x)

dt

61. Write the length of the electron spin!
Solution:

|S| =
√

1

2
· (1

2
+ 1) · ~ =

√
3

2
· ~

62. Write the length of the orbital angular momentum in a d state!
Solution:
In a d state the maximum of the z-component of the angular mo-
mentum is ` = 2 |L| =

√
2 · (2 + 1) · ~ =

√
6 · ~

63. question here
Solution:
solution here

64. Give the formulas of the photon density of states g(ν) and the average energy
density u(ν, T ) in a cavity.

Solution:

g(ν) =
8π V

c3
ν2 (1.1)

u(ν, T ) =
8π h

c3
ν3

eh ν/kB T − 1
(1.2)

2 Problems
Useful constants : Planck’s constant: h = 6.63 10−34 Js,

elementary charge : e = 1.6 10−19 C,
electron mass : me = 9.1 10−31kg,
Stefan - Boltzman constant : σ = 5.670373(21) · 10−8Wm−2K−4,
Rydberg energy : 1 Ry = 13.6 eV
Avogadro’s constantL 6.022 · 1023 1/mol

65. Calculate the distance between the 4th and 5th rotational levels in an O2

molecule! The mass of the O atom is mo = 1.33 10−23g and the internuclear
distance between the atoms in the molecule is ro = 1.2 10−10m
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Solution:

E`rot =
~2

2Θ
` (`+ 1) now ` = 4

∆E = E`+1
rot − E`rot” =

~2

2Θ
[(`+ 1) (`+ 2)− ` (`+ 1)]

=
~2

Θ
(`+ 1) = 5

~2

Θ

Θ =
mO

2
r2o = 9.58 10−44kgm2

Therefore ∆E4rot = 5∗~2

9.58 10−44 = 5.81 10−25J = 3.62 10−6eV
66. An electron gun emits electrons with energies between 3.2 keV and 3.3 keV.

What is the minimum uncertainty of the position of the electrons?
Solution:
Because

U =
p2

2me e

p =
√

2me eU

and

∆p∆x ≥ ~
2

and

∆p = p2 − p1 =
√

2me eU −
√

2me eU

= 3.1036419 10−23 − 3.0562553 10−23 = 4.74 10−25 kgm2/s2

∆x =
~

2 ∆p
= 1.11 10−10m

Using h/2 instead of ~/2 would give 6.99 10−10 m, while with h this
would be 1.39 10−9 m.

67. An electron is confined in a 3D potential box with sides 10µm, 20µm and
30µm. Give the energy and degeneracy of the 3 lowest states.

Solution:
The possible energy levels in one direction:

En =
h2

8me L2
n2

therefore in 3D

En1,n2,n3 =
h2

8me

(
n21
L2
1

+
n22
L2
2

+
n23
L2
3

)
= 6.02 10−28

(
n21
1

+
n22
4

+
n23
9

)
[J ]

= 3.76 10−9
(
n21
1

+
n22
4

+
n23
9

)
[eV ]
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The 3 lowest lying energy states can be determined by trying out
different combinations of the 3 numbers and selecting the 3 smallest
values:
n1 n2 n3 factor
1 1 1 1.36
1 1 2 1.47
1 2 1 1.61
2 1 1 2.36
2 2 1 2.61
1 2 2 1.72
1 1 3 1.58

From this table the indices for the 3 lowest

levels are: (1,1,1), (1,1,2) and (1,2,1).
The corresponding energies and degeneracies:

Energy level E(×10−28 J) E(×10−9 eV) degeneracy
E111 8.20 5.11 1
E112 8.87 5.53 1
E121 12.7 7.94 1
E113 13.6 8.46 1
E122 14.7 9.19 1
E211 26.3 16.39 1
E212 28.3 17.7 1
E221 30.8 19.2 1
E222 32.8 20.47 1

68. An electron is confined in a three dimensional cubic potential box with sides
of L = 3200nm. What is the wavelength of the photon emitted during an
electronic transition between level 3 and the ground state?
How would this value change if the size of the box was doubled?

Solution:
For a cubic potential box (3 D problem) the wave function can be
written as the product of 3 one dimensional wave functions, each
along one coordinate axis, therefore the total energy can be written
as the sum of 3 energy values for the 3 axes. In a one dimensional
potential box for the wave function at the n-th level

L = n
λ

2
⇒ λ = 2

L

n
⇒

p =
h

λ
=

h

2L
n n = 1, 2, 3...

En =
p2

2m
=

h2

8mL2
n2

Therefore in 3D

En =
h2

8mL2

(
n2x + n2y + n2z

)
For a cubic box in 3 dimensions all but the ground level is degener-
ate. In the ground state (E1) all of nx, ny, nz must be 1. On level 3
(E3) any two of them must be 2, i.e. the degeneracy of level 3 is 3.
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(On level 2 one of nx, ny, nz is 2, the others are 1.)

E1 =
h2

8mL2
(1 + 1 + 1) = 1.76 · 10−26 J = 1.1 · 10−7 eV

E3 =
h2

8mL2
(22 + 22 + 1) =

9

3
E1 = 5.295 · 10−26J = 3.3 · 10−7 eV

h ν = E3 − E1 =
h2

8mL2
(9− 3) =

=

(
9

3
− 1

)
E1 = 3.53 · 10−26 J = 2.2 · 10−7 eV

λ =
c

ν
=

8mL2 c

6h
= 5.627m

If L, the size of the box, is doubled according to the formula for λ
the wavelength is quadrupled.

λ = 22.5m

69. A spherical body with a radius of R = 1 cm has a constant absorption co-
efficient in the whole spectral range. What is the absorption coefficient if it
emits 2.7 · 1020eV in every second? at T = 1000 K?

Solution:
The total energy emitted per unit time by black-bodies is given by
the Stefan-Boltzmann law: Etot = Aσ T 4, Kirchoff’s law states that
e/a = const, where a = 1 for black-bodies, therefore for a body with
a < 1 the emitted energy is less by the same factor:

Etot = a 4π R2 σ T 4 = a · 4π 10−4 · 5.670373 · 10−8

=a · 71.33J/s = a · 4.5 · 1020eV/s = 2.7 · 1020eV/s

a = 0.6

70. Calculate the momentum and diameter (position uncertainty) for a dust par-
ticle with mass of 730 · 10−4 ng, if its velocity uncertainty is 1.45 · 10−18 ms .

Solution:

∆ v = 1.45 · 10−18
m

s

∆ p =
∆ v

m
= 1.06 · 10−31 kg

m

s

∆x =
~

2 ·∆ p
, = 5 · 10−4m

71. Calculate the momentum and velocity uncertainty for a dust particle of di-
ameter 500µ and mass of about 730 · 10−4 ng, which is at rest.

Solution:
If the particle is at rest then the position uncertainty ∆x equals to
its size. Therefore

∆x = 5 · 10−4m,

∆ p =
~

2 ·∆x
, ∆ p = 1.06 · 10−31 kg

m

s

∆ v =
~

2 ·m ·∆x
, ∆ v = 1.45 · 10−18

m

s
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72. Calculate the wavelength of the light emitted by the electron in a hydrogen
atom during the E3 → E2 transition!

Solution:

ν =
E3 − E2

h

λ =
c

ν
=

c · h
E3 − E2

=
3 · 108 m/s · 6.64 · 10−34

(−13.6) 1.6 · 10−19
(
1
9 −

1
4

) = 6.564 · 10−7 m

λ = 656 nm

or with the value of ν

ν =
−13.6 eV 1.6 · 10−19J/eV

6.64 · 10−34

(
1

9
− 1

4

)
= 4.567 · 1014 1/s

λ =
c

ν
=

3 108 m/s

4.567 · 1014 1/s
= 6.564 · 10−7 m = 656 nm

73. Calculate the wavelength of the light emitted by the electron in a hydrogen
atom during the E4 → E2 transition!

Solution:

ν =
E4 − E2

h
=
−13.6 · 1.6 · 10−19

h

(
1

16
− 1

4

)
= 6.16 · 1014Hz

(2.1)

λ =
c

ν
= 487 nm (2.2)

74. Consider an isotropic harmonic oscillator in 2 dimensions! The Hamiltonian
is given by

Ho =
p2x
2m

+
p2y

2m
+
mω2

2
(x2 + y2)

Create a table of the energies and degeneracy of the four lowest lying states
Solution:
A one-dimensional linear harmonic oscillator may have an energy
of

En = h ν (
1

2
+ n), where n = 0, 1, 2, 3, . . .

In two dimensions

En = h ν (1 + nx + ny), where n = 0, 1, 2, 3, . . .

The energy and the degeneracy of the 4 lowest lying states are
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Level nx ny degeneracy
Eo = h ν 0 0 non-degenerate
E1 = 2h ν 1 0 2

0 1
E2 = 3h ν 2 0

0 2 3
1 1

E3 = 4h ν 3 0
0 3
2 1 4
1 2

75. Consider the following hypothetic wave function for a particle confined in the
region 7 ≤ x ≤ 10: ψ(x) = A(70 + 3xx2) inside the region and 0 outside it
(a) Sketch the wave function

Solution:
Inverted parabola with peak 72.25 ∗A at position 1.5

(b) Normalize the wave function over the range the particle is confined in
Solution:
Normalization means the determination of A so that the abso-
lute square integral of the wave function is 1.

1 =

∫ 10

−7
|ψ(x)|2 dx =

= |A|2
∫ 10

−7
(70 + 3x− x2)(70 + 3x− x2)dx =

= |A|2
∫ 10

−7
(4900 + 9x2 + x4 + 420x− 140x2 − 6x3)dx =

= |A|2
[
4900x+

1

5
x5 + 210x2 − 131

3
x3 − 6

4
x4
]10
−7

=

= |A|2 · (31333.33− 15995.23) = 47328.57 · |A|2

A = 1/
√

47328.57 = 1/217.55 = 4.5966 · 10−3

(c) Determine the expectation value < x > using the normalized wave func-
tion

Solution:
The expectation value of a physical quantity O which depends
on x is

∫
ψ∗(x)Ô(x)ψ(x)dx

< x > = A2

∫ 10

−7
(4900x+ x5 + 420x2 − 131x3 − 6x4)dx =

= 2.113 · 10−5
[
2450x2 +

1

6
x6 + 130x3

131

4
x4 − 6

5
x5
]10
−7

=

= 1.5

(d) Again, using the normalized wave function, calculate the expectation
value of the kinetic energy of the particle

Solution:

15



< Ekin > =

∫ 10

−7
ψ∗(x) ˆEkin(x)ψ(x)dx =

∫ 10

−7
ψ∗(x)

p̂2

2me
(x)ψ(x)dx =

=

∫ 10

−7
ψ∗(x)

(
−− ~2

2me

d2

dx2

)
(x)ψ(x)dx =

= A2

(
−− ~2

2me

∫ 10

−7
(70 + 3xx2) · (−2)dx

)
=

= 2.113 · 10−5
[
−140x− 3x2 + 2/3x3

]10
−7 = 9.7377 · 10−34J

= 6.07 · 10−15eV

76. Prove the following commutation relationships of operators Â, B̂ and Ĉ

[Â+ B̂; Ĉ] = [Â, Ĉ] + [B̂, Ĉ]

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

Solution:
Substitute into the definition of the commutator: [Â, B̂] = Â · B̂ −
B̂ · Â:

[Â+ B̂, Ĉ] = (Â+ B̂)ĈĈ(Â+ B̂)

= ÂĈ + B̂ĈĈÂĈB̂

= (ÂĈĈÂ) + (B̂ĈĈB̂)

= [Â, Ĉ] + [B̂, Ĉ]

[Â, B̂Ĉ] = Â(B̂Ĉ)(B̂Ĉ)Â = Â(B̂Ĉ) + B̂(ÂĈ)− B̂(ÂĈ)− (B̂Ĉ)Â

= (ÂB̂)Ĉ(B̂Â)Ĉ + B̂(ÂĈ)− B̂(ĈÂ)

= [Â, B̂]Ĉ + B̂[Ĉ, Â]

77. Determine the work function of potassium in electron volts knowing that when
illuminated by a light with a wavelength of λ = 350nm it emits electrons with
a velocity of 710 km/s!

Solution:

W = h ν − 1

2
me v

2 = h
c

λ
− 1

2
me v

2 = 3.38 · 10−19J = 2.11 eV

78. Determine the work function of potassium in electron volts knowing that when
illuminated by a light with a wavelength of λ = 400nm it emits electrons with
a velocity of 591 km/s!

Solution:

W = h ν − 1

2
me v

2 = h
c

λ
− 1

2
me v

2 = 3.38 · 10−19J = 2.11 eV

79. Determine the work function of potassium in electron volts knowing that when
illuminated by a light with a wavelength of λ = 580nm it emits electrons with
a velocity of 100 km/s!
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Solution:

W = h ν − 1

2
me v

2 = h
c

λ
− 1

2
me v

2 = 3.38 · 10−19J = 2.11 eV

80. The ground state energy of the H atom is E1 = 13.6eV . What is the wavelength
of a photon emitted during the transition E4 > E2?

Solution:

En = E1
1

n2
n = 1, 2, 3...

hν = ∆E = E2 − E4 = E1 (1/4− 1/16) = 2.55eV = 4.09 10−19J

λ =
c

ν
= c ∗ h/4.09 10−19 = 4.86 10−7m = 486nm

81. The W work function of a metal may be measured by applying an external
U voltage on it to prohibit the emission of electrons. Determine W if, at
λ1 = 281nm this voltage is U1 = 0.66V , while for λ2 = 245nm U2 = 1.26V

Solution:
h ν(= h cλ ) = W + 1

2 me v
2 When electron emission is prohibited

by an external U voltage, then v = 0, and the energy above W is
E = −eU . The two equations are

h
c

λ1
= W − eU1

h
c

λ2
= W − eU2

I.e.

W =
1

2

[
(h

c

λ1
+ eU1) + (h

c

λ2
+ eU2)

]
= 1.51 10−18J = 9.47eV

82. The Zeeman components of a 500 nm spectral line are 0.0116 nm apart when
the magnetic field is 1.00 T. Find the e/me ratio for the electron from these
data.

Solution:
The magnitude of the energy shift from the given ∆λ value is

∆EB = h∆ ν = h

(
c

λ2
− c

λ1

)
=

c h

λ1 λ2
(λ1 − λ2) = −c h∆λ

λ1 λ2

Where λ1,2 = λ±∆λ/2. But ∆λ� λ therefore in the denominator
λ1 λ2 ≈ λ2.

|∆EB | =
h c∆λ

λ2
=

6.63 · 10−34 · 3 · 108 · 0.0116 · 10−9

(500 · 10−9)2
= 9.22 10−24J

For the Zeeman effect

∆EB =
e

2me
L ·B

e

me
=

2 |∆EB |
L ·B

17



Substituting ∆EB and taking L and B parallel, B = 1T and L = 1 ~

e

me
=

2 · 9.22 · 10−24

1.05 · 10−34
= 1.748 1011

The exact value is 1.76 1011
83. The absorption coefficient for a spherical body with a radius of R = 1 cm is

0.6 in the whole spectral range. How much energy will it emit at T = 1000 K?
Solution:
The total energy emitted per unit time by black-bodies is given by
the Stefan-Boltzmann law: Etot = Aσ T 4, Kirchoff’s law states that
e/a = const, where a = 1 for black-bodies, therefore for a body with
a = 0.6 the emitted energy is less by the same factor:

Etot = a 4π R2 σ T 4 = 0.6·4π 10−4·5.670373·10−8 = 42.8J/s = 2.7·1020eV/s

84. The un-normalized wave function of an electron is ψ(x) = 12x2−8x Calculate
the kinetic energy of this electron.

Solution:
The kinetic energy is determined from the formula:

< Ekin >=

∫∞
−∞ ψ∗(x) p̂2

2me
ψ(x)dx∫∞

−∞ ψ∗(x)ψ(x)dx

where the denominator contains the normalization factor. For our
wave function both integrals are infinite, so this function is not a
physical wave function in the whole space. After integration the nu-
merator contains 3rd an 2nd powers of x, while the one in the de-
nominator (the normalization factor) contains 5th and 4th power of
x too. If we now set the limits of the integration to ±a and calculate
the limit of this fraction as a tends to ∞ we may see that the de-
nominator goes faster to infinity than the numerator does, i.e. the
value of kinetic energy tends to 0.

85. What is the acceleration voltage in an electron gun, if the average wavelength
of the emitted electrons is 3.1 nm?

Solution:

p =
h

λ
, E =

p2

2me
= e∆U ⇒ ∆U =

p2

2me e
=

h2

2me e λ2

∆U =
(6.63 10−34)2

2 · 9.1 10−31 · 1.6 10−19 · (3.1 10−9)2
= 0.16V

86. What is the energy in eV and the momentum of a photon with a wavelength
of
a)λ = 0, 600µ (visible light)
b)λ = 0, 100nm (X-ray)
c)λ = 0, 001nm (gamma ray)
What are the de Broglie-wavelengths and energies of electrons which have the
same momentum as these photons?
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Solution:

For the photon: E = h ν = h
c

λ
, and the momentum p = h

ν

c
=
h

λ
therefore for photons

a)E = 3.311 · 10−19 J = 2.066 eV , p = 1.104 · 10−27 kgm/s

b)E = 1.987 · 10−15 J = 1.240 · 104 eV , p = 6.626 · 10−24 kgm/s

c)E = 1.987 · 10−13 J = 1.240 · 106 eV , p = 6.626 · 10−22 kgm/s

For an electron the de Broglie-wavelength is given by the same for-

mula, λ =
h

p
, as for photons, therefore when photons and electrons

have the same momentum, they have the same wavelength as well.
However the energies of electrons and photons will be different:

Ee =
p2

2me
=

h2

2me λ2
, and Eph = c · p =

c · h
λ

a)Ee(0, 600µm) = 6.694 · 10−25 J =4.178 · 10−6 eV

a)Ee(0, 100nm) = 2.410 · 10−17 J =1.504 · 102 eV

a)Ee(0, 001nm) = 2.410 · 10−13 J =1.504 · 106 eV

87. You have a system of 7 half-spin particles (Fermions) with energy levels En =
n · E (n = 0,1,2,3,...). How many microstates are there for the seven particles
if the macrostate has a total energy of 14 E

Solution:
Every level may be occupied by maximum 2 electrons of opposite
spins, therefore only the following 14 configurations are possible:

level Configuration
1 2 3 4 5 6 7 8 9 10

8 •
7 •
6 • • •
5 •• • • • •
4 • • •
3 • •• • • •• •
2 •• • • •• • •• • ••
1 •• •• •• •• • •• •• • • ••
0 •• •• •• •• •• •• •• •• •• •
level Configuration

11 12 13 14

8
7
6
5
4 •• •• • •
3 • •• ••
2 • •• •• •
1 • •• ••
0 •• • •• •
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88. You have a system of six half-spin particles (Fermions) with energy levels
En = n ·E (n = 0,1,2,3,...). How many ways can you distribute the six particles
so that the total energy of the system is 12 · E

Solution:
Every level may be occupied by maximum 2 electrons of opposite
spins, therefore only the following 18 configurations are possible:

level Configuration
1 2 3 4 5 6 7 8 9 10

8 •
7 • •
6 • • •
5 •• • • •
4 • •
3 • • •• •
2 • •• • •• • ••
1 •• •• • •• • •• •• • •
0 •• •• •• •• •• • •• •• •• ••
level Configuration

11 12 13 14 15 16 17 18

8
7
6
5 •
4 •• •• •• • • •
3 • • •• •• • ••
2 • •• • • •• ••
1 •• • •• •• • ••
0 • •• •• • •• • •
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