

Useful constants: $h=6.6310^{-34} \mathrm{Js}, e=1.610^{-19} \mathrm{C}, m_{e}=9.110^{-31} \mathrm{~kg}$, $L_{A}=6.02210^{23} 1 / \mathrm{mol}$

1. In a 3D spherical quantum harmonic oscillator the energy of the 3rd excited state is 0.73 eV . What is the frequency ω ?
(2 points)

Solution:

$$
E_{n, m, l}=\hbar \omega\left(n+m+l+\frac{3}{2}\right), \text { where } \quad n, m, l=0,1,2, \ldots
$$

The energies of the states:
ground state : $E_{0}=1.5 \cdot \hbar \omega$,
First excited state: $E_{1}=\hbar \omega(1+0+0+1.5)$,
2nd exc. state $E_{2}=\hbar \omega(1+1+0+0.5)$
$3 r d$ excited state $E_{3}=\hbar \omega(1+1+1+1.5)$

$$
\omega=\frac{E_{3}}{\hbar\left(3+\frac{3}{2}\right)}=\frac{0.73 \cdot 1.6610^{-19}}{6.6310^{-34} \cdot 4.5}=2.4610^{14} \mathrm{~Hz}
$$

2. Calculate the energy of the ground state of H , if the wavelength of the light emitted in transition $E_{4} \rightarrow E_{2}$ is 486 nm
(2 points)

Solution:

The wavelength of the emitted light is determined by the energy
difference $E_{4}-E_{2}$:

$$
h \nu=h \frac{c}{\lambda}=\Delta E
$$

Let's denote the ground state with E_{1}. For H

$$
E_{n}=E_{1} \frac{1}{n^{2}}
$$

so

$$
\begin{aligned}
\Delta E & =E_{1}\left(\frac{1}{16}-\frac{1}{4}\right) \\
h \frac{c}{\lambda} & =E_{0}\left(\frac{1}{16}-\frac{1}{4}\right) \\
E_{0}=\frac{h \frac{c}{\lambda}}{\left(\frac{1}{16}-\frac{1}{4}\right)} & =2.1810^{-18} \mathrm{~J}=-13.6 \mathrm{eV}
\end{aligned}
$$

3. An electron is confined into a three dimensional cubic potential box with sides of $L=3.6 \mu \mathrm{~m}$. What is the wavelength of photons emitted during an electronic transition between level 3 and the ground state? How would this value change if the size of the box was doubled?
(2 points)

Solution:

$1 D$ potential box: $L=n \cdot \lambda / 2$, where $n=1,2, \ldots$. So $p_{n}=h / \lambda_{n}=$ $h \cdot n / L$, i.e.

$$
E_{n}=\frac{p^{2}}{2 m_{e}}=\frac{h^{2}}{2 m_{e}(2 L)^{2}} n \quad n=1,2, \ldots
$$

For a 3D cubic potential box:

$$
E_{n, m, l}=\frac{h^{2}}{8 m_{e} L^{2}}\left(n^{2}+m^{2}+l^{2}\right) \quad n, m, l=1,2, \ldots
$$

The energy of the ground level is

$$
E_{111}=3 \frac{h^{2}}{8 m_{e} L^{2}}
$$

For the 3rd level in 3 D

$$
E_{122}=E_{212}=E_{221}=9 \frac{h^{2}}{2 m_{e} L^{2}}=3 E_{111}
$$

The energy of the emitted photon then is

$$
\begin{gathered}
E_{\text {photon }}=h \nu=\frac{h c}{\lambda}=\Delta E=6 \frac{h^{2}}{8 m_{e} L^{2}}=2.7910^{-26} J \\
\lambda=\frac{h c}{\Delta E}=7.12 m
\end{gathered}
$$

If the size of the box is doubled the energy levels will be 4 times smaller and the phonon wavelength 4 times larger.
4. Sketch the conventional, primitive and Wigner-Seitz unit cells of a 2 dimensional fcc lattice
(2 points)

Solution:

5. The dispersion relation of electrons in a semiconductor valence band near the band edge is approximated by the following function:

$$
E_{v}(k)=-6.04810^{-20}\left(k-2.4510^{8}\right)^{2}+13 \quad[e V]
$$

In the same semiconductor the energy near the conduction band edge is

$$
E_{c}(k)=9.2910^{-20} k^{2}+13.7 \quad[e V]
$$

Determine the effective masses of the electrons and the holes.
(2 points)

Solution:

The energy formula in J for electrons in the valence band:

$$
\begin{equation*}
E_{e, v}(k)=\left(-6.04810^{-20}\left(k-2.4510^{8}\right)^{2}+13\right) \cdot 1.610^{-19} \tag{J}
\end{equation*}
$$

In the conduction band:

$$
\begin{equation*}
E_{e, c}(k)=\left(9.2910^{-20} k^{2}+13.7\right) \cdot 1.610^{-19} \tag{J}
\end{equation*}
$$

Therefore the hole dispersion relation in the valence band is:

$$
\begin{equation*}
E_{h, v}(k)=-E_{e, v}(k)=\left(6.04810^{-20}\left(k-2.4510^{8}\right)^{2}+13\right) \cdot 1.610^{-19} \tag{J}
\end{equation*}
$$

The definition of the effective mass:

$$
\frac{1}{m_{e f f}}=\frac{1}{\hbar^{2}} \frac{d^{2} E(k)}{d k^{2}}
$$

From this:

$$
\begin{array}{ll}
\frac{1}{m_{c}}=\frac{2.9810^{-38}}{\hbar^{2}}=1.7410^{30} \mathrm{~kg}^{-1} & \Rightarrow \quad m_{c}=3.7410^{-31} \mathrm{~kg}=0.41 \mathrm{~m}_{e} \\
\frac{1}{m_{v}}=\frac{1.9410^{-38}}{\hbar^{2}}=2,6710^{30} \mathrm{~kg}^{-1} & \Rightarrow \quad m_{v}=5.7410^{-31} \mathrm{~kg}=0.63 \mathrm{~m}_{e}
\end{array}
$$

