Test \#1

Quantum Mechanics
March 25, 2024
Solution
You need to have at least 20 points to pass the test

1 Quiz

Select the correct answer from the possibilities. Each correct answer is 2 points, each incorrect one is -1 point, no answer is 0 point, but the total points for one question are never negative.
Total points for this part is 20 points

1. According to (classical) electrodynamics accelerating charges radiate EM waves, because electrons in atoms are orbiting, therefore accelerating, they should loose their kinetic energy and fall into the nucleus, but atoms are stable. Why?

Solution:

\square because (classical) electrodynamics is invalid in $Q M$
because electrons also get energy back from other electrons
\checkmark because electrons of stationary orbitals are not accelerating
because for electrons the Pauli exclusion principle is valid
2. Value and unit of the Planck constant and 1 electron volt

Solution:

\square	$9.1 \times 10^{-31} J, 1.6 \times 10^{-19} \mathrm{C}$
\checkmark	$6.63 \times 10^{-34} \mathrm{Js}, 1.6 \times 10^{-19} \mathrm{~J}$
\square	$9.1 \times 10^{-31} \mathrm{Js}, 1.6 \times 10^{19} \mathrm{As}$
\square	$1.6 \times 10^{-19} \mathrm{C}, 6.63 \times 10^{-34} \mathrm{Js}$

3. Which statement(s) is (are) true?

Solution:

\checkmark In classical physics the energy is continuous, while in quantum physics bound states have discreet energy levels.

Both classical and quantum mechanics the energy always changes in discreet units, but this unit is undetectably small for macroscopic bodies

It depends on the interaction so no general statement can be given

In quantum physics and for bound states in classical physics the energy is continuous.
4. What quantity/quantities is/are called "potential' in quantum mechanics?

Solution:

$\checkmark \quad$ The potential energy and the operator of the potential energy
The electrical potential of an atom
The part of the energy that can be used for work
The internal energy of quantum systems
The voltage difference between two quantum states
5. Can a real inter-atomic potential near to the equilibrium position be approximated with a linear harmonic oscillator?

Solution:

Yes, because the potential curve can be approximated by a circle segment.
$\checkmark \quad$ Yes, because the potential curve can be approximated by a parabola.
\square It is not an approximation, because that is the potential curve
of a linear harmonic oscillator.
No, because the potential in the molecule is not harmonic.No, because the wave function is not a harmonic function.
6. During tunneling through a narrow potential barrier with a maximum height of V_{0}

Solution:

when $E>V_{0}$ the electron is never reflected back
when $E<V_{0}$ the electron is always reflected back
the probability of passing through decreases exponentially with the width of the barrier
the probability of passing through increases exponentially with
the width of the barrier
both in classical and in quantum physics, when $E>1.5 \times V_{0}$
the electron is never reflected back
7. In a single measurement of any physical parameter on a micro-particle system the measured result

Solution:

\checkmark is always a single eigenvalue of the system, but it cannot be predicted which one before the measurement is performed
is always a combination of eigenvalues of the system
is the probability of a given value
is the expectation value of the operator of the parameter
is always an eigenvalue of the system, and can be determined which one even before the measurement is performed
8. The electron orbital in an atom is

Solution:

the region of space inside which the electron resides with a-90\% probability
just another word for the orbit of the electron in the atom

```
\checkmark ~ a n o t h e r ~ n a m e ~ o f ~ t h e ~ w a v e ~ f u n c t i o n ~ o f ~ t h e ~ e l e c t r o n ~
the absolute value of the wave function of the electron
any of the Bohr-orbits
```

9. The blue color of big bodies of water and water ice

Solution:

\checkmark comes from the absorption of red light by the vibrating water molecules
comes from the scattering of the blue light by the water molecules is caused by Rayleigh-scattering
is caused by indirect Reyleigh-scattering
is caused by Raman-scattering
10. For a photon gas you have to

Solution:

use Maxwell-Boltzmann statisticsuse the Pauli principle
use Fermi-Dirac statistics
use Bose-Einstein statisticsuse the Compton formula

2 Problems

Useful constants: elementary charge: $e=1.6022 \cdot 10^{-19} C$,
electron mass: $m_{e}=9.1094 \cdot 10^{-31} \mathrm{~kg}$,
Stefan-Boltzman constant: $\sigma=5.6704 \cdot 10^{-8} W m^{-2} K^{-4}$,
11. The new James Webb space telescope works mostly in the near to mid infrared range. For this the telescope must be kept very cold, under 50K. This is achieved to put a five-layer heat shield below the telescope itself, which protects it from the EM radiation of the Sun, the Earth and the Moon. The shield's fully deployed dimensions are $14.162 m \times 21.197 m$. Calculate how much thermal energy reaches the shield from the Sun in every second, knowing that the Sun's temperature is $T=5772 K$, the Earth-Sun distance is 150.4 million kilometer and the Sun's radius is 696342 km !
(Fun fact: the temperature on the Sun facing side may reach $110^{\circ} \mathrm{C}$ (383 K), while on the other side it can be as low as $-234^{\circ} \mathrm{C}(39 \mathrm{~K})$, and even so, the mid IR . instrument still must be cooled by a helium refrigerator, or cryocooler system down to 7 K .)
(10 points)

Solution:

The total power of the radiation from the Sun using the Stephan-Boltzmann law is

$$
P_{\text {tot }}=4 \pi \times \sigma \times R_{\text {Sun }}^{2} \times T_{\text {Sun }}^{4}\left(=3.835 \cdot 10^{26} W\right)
$$

One m^{2} area at $r=150.4 \cdot 10^{9} m$ distance from the Sun receives

$$
\begin{aligned}
p & =\frac{P_{t o t}}{4 \pi \times r^{2}} \times 1 m^{2}=\frac{4 \pi \times \sigma \times R_{\text {Sun }}^{2} \times T_{\text {Sun }}^{4}}{4 \pi \times r^{2}} \\
& =\left(\frac{R_{\text {Sun }}}{r}\right)^{2} \times \sigma \times T_{\text {Sun }}^{4}\left(=1.3491 \cdot 10^{3} W\right)
\end{aligned}
$$

power,
4 points
so the area $A=14.162 m \times 21.197 m=3.0019 \cdot 10^{2} m^{2}$ receives

$$
\begin{array}{r}
p_{A}=p \times A=4.0498 \cdot 10^{5} \mathrm{~W} \quad \text { power and } \\
\mathcal{E}_{A}=p_{A} \times 1 \mathrm{~s}=\underline{\underline{4.0498 \cdot 10^{5} \mathrm{~J}} \quad \text { energy in } 1 \text { second }}
\end{array}
$$

3 points
12. A linear harmonic oscillator with zero point energy $\mathcal{E}_{o}=1.1216 \cdot 10^{-17} \mathrm{~J}$ is excited by electrons accelerated through $V=420 \mathrm{~V}$. Are the electrons able to excite the oscillator? (Calculate with at least 4 digits of accuracy)
If your answer is 'Yes' then calculate N, the index of the excited level, otherwise prove excitation with these electrons is not possible!
(Hint: use eV in the calculations.)
(10 points)

Solution:

Step \#1 1 points
$\mathcal{E}_{N}=h \nu\left(N+\frac{1}{2}\right), \mathcal{E}_{o}=\frac{1}{2} h \nu$, If there is an integer N for which
$V=\Delta \mathcal{E}\left(\equiv \mathcal{E}_{N}-\mathcal{E}_{0}\right)$, then excitation is possible, otherwise it is not. $\mathcal{E}_{N}-\mathcal{E}_{o}=N h \nu$.

$$
\begin{gathered}
h \nu=2 \mathcal{E}_{o}=2 \frac{1.216 \cdot 10^{-17} \not \mathrm{t}}{1.602 \cdot 10^{-19} \not \mathrm{~J} / \mathrm{eV}}=140 \mathrm{eV} \\
\underline{\underline{N}}=\frac{V}{h \nu}=\frac{420 \mathrm{eV}}{140.0 \mathrm{eV}}=\underline{\underline{3}}
\end{gathered}
$$

Step \#2
3 points
Because the value of N is an integer, excitation is possible by these electrons.
Remark: if the formulas used are correct, but due to an incorrect rounding error in the calculations (when the value of the electric charge used to convert Joules to $e V$ is not given by 4 decimal digits) then value for N is not an integer, which should lead to the conclusion that excitation is not possible, the maximum points are given.
13. What are the frequency of photons a rotating O_{2} molecule can absorb in a transition between its 4 th and 5 th energy state? $\left(M_{O_{2}}=31.9989 \mathrm{~g} / \mathrm{mol}, d_{O-O}=0.1208 \mathrm{~nm}\right)$
(10 points)

Solution:

The rotating molecule has energy levels $\mathcal{E}_{\ell}=\frac{\hbar^{2}}{2 I} \ell(\ell+1)$ so the distance of the $(\ell+1)$ th and the ℓ th level is (c.f. book Eq. 7.6.5)

$$
\Delta \mathcal{E}_{\ell \rightarrow \ell+1}=\mathcal{E}_{\ell+1}-\mathcal{E}_{\ell}=\frac{\hbar^{2}}{I}(\ell+1)
$$

Calculate I:
$M_{O_{2}}=2 m_{O}=\frac{31.9989 \mathrm{~g} / \mathrm{mol}}{L_{A}}=\frac{31.9989 \mathrm{~g} / \mathrm{mol}}{6.02 \cdot 10^{23} / \mathrm{mol}}=5.31 \cdot 10^{-23} \mathrm{~g}=5.31 \cdot 10^{-26} \mathrm{~kg}$.
3 points
The O_{2} molecule is a linear molecule with two equal non-zero moment of inertia (rotational inertia) of
$I=2 \times m_{O} r^{2}=M_{O_{2}} r^{2}=M_{O_{2}}\left(\frac{d_{O-O}}{2}\right)^{2}=5.31 \cdot 10^{-26} \mathrm{~kg}\left(\frac{1.208 \cdot 10^{-10} \mathrm{~m}}{2}\right)^{2}$

$$
I=1.94 \cdot 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}
$$

When $\ell=4$, then $\Delta \mathcal{E}_{4 \rightarrow 5}=5 \frac{\hbar^{2}}{I}=5 \times \frac{\left(1.06 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{1.94 \cdot 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}}=\underline{\underline{2.875 \cdot 10^{-22} \mathrm{~J}}}$
(units: $\frac{J^{2} \mathrm{~s}^{2}}{\mathrm{~kg} \mathrm{~m}^{2}}=\frac{\mathrm{Jkgm}^{2} / \mathrm{s}^{2} \mathrm{~s}^{2}}{\mathrm{~kg} \mathrm{~m}^{2}}=J$)
(4 points)
For an absorbed photon: $h \nu=\Delta \mathcal{E}_{4 \rightarrow 5}$
(3 points)

$$
\nu=\frac{\Delta \mathcal{E}_{4 \rightarrow 5}}{h}=\underline{\underline{4.3389 \cdot 10^{11}} s^{-1}}
$$

